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1. Introduction

Erroc-tr=2e direct methods for the inversion of numerical
and polynomial matrices are available in the literature [1]
[2]. In this paper we describe a parallel error-free high-
order convergent matrix inversion method for matrices over
integers, based on the Newton-Schultz iterative scheme [3]

[4] and the p-adic approximation [5-9]. Some of the impor-
tant aspects of this scheme are:

(i) Inversion of matrices over p-adic fields, analogously

to inverting or reciprocating the numbers, without
any convergence problem.

(ii) The exact and simultaneous determination of the
rational elements of the inverse matrix in p-adic
digit parallel fashion with a quadratic or higher rate.

(iii) Facy realization of tiie scheme and its variants (hiagher-
order convergent extensions) by parallel matrix multi-
plications.

This paper is organized in seven sections. In the secoad
section we outline the principle of the Newton-Schultz scheme
for reciprocating numbers. The third section describes the
reformulation of the Newton-Schultz scheme in an algebraic
setting to compute the p-adic approximant to the inverse of a
matrix over the ring of integers. 1In the fourth section we
describe the extended Euclideecn algorithm that converts a
given p-adic approximant over a range of rationals into an

equivalent rational. The fifth section contains an example.

R o L P Bl * 2 =




In Secction 6 we briefly deal with the solution of a linear
system of equations, having a linear convergence rate.
Several remarks pertaining to possible extensions and gen-

eralizations are provided in the last section.




2. The principle

Let f(x) be a real function of the real variaple x and

x=a be a root of f(x)=0. We assume that:
(a) f(x), £'(x) and £"(x) are continuous in a neighbor-
hood [a,b] of x=»; (b) x=+ is an isolated root in
fa,bl: (c} £'(x) and f"(x) do not vanish in f{a,bl.

The search for the root x=. entails finding the root

of the equaticn

f(x)

X = X - (%) h(x)

Since ' (2:)=0 there exists a neighborhood of x=a such that

the sequence {Xi} defined by
i0

E(x__ ) /€' (x 1) (n=1,2,...) (1)

n n-1 ~ n-1
converges to x=a if the first approximation X=X lies in this
neighborhood. Applied to the function f(x)=1/x-a (1) gives

the Newton-Schultz scheme

X = X

n n_1(2—axn_l) (2)

The sequence (2) converges to a—l. The matrix inversion algori-

thm to be described in the next section is by analogy based on ///~€T\

fo % \
[ R - S|
the sequence of iterates defined by (2) {3] {4]. NG °€J
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3. The Newton-Schultz method

Let A=[aij] be a matrix over the ring of intecers Z and

I a prime such that det A mod p#0. (The reasonr for this will

-1

hecome clear later.) The algorithm first constructs A mod p

and using this in the Newton-Schultz recurrence outains a segment-

ed p-a2dic representation of the inverse matrix {5-9].

Thoorem l: There exists a matrix sequence {Bzi}i>0 such that
i Z

~“hLi mod p2 = I for all i>0, where A is the matrix to be inverted

and I 1is the identity matrix; Bzi is the inverse of A(in 2) mod
A1
p“ (or B,i is the p-adic approximant of A 1y,

Proof: We show the sequence {BZi}i>0 can be generated recur-

sivcly and then prove by induction that it has the property
i

stated, namely, AB,i mod p2 = I. The first member of the sequence
81 is obtained in a priming step by solving

ABy mod p = I
by Jaussian elimination or some other method. It amounts to

€inding the inverse of A in Z mod p. Then in a powering step

.2 use the recurrence relation

1
-

B,i = Byi-1 (2I - AB,i-1) mod p°  (i>1) (3)
to construct the successive iterates.
51
To see that the theorem holds let ABZi mod p° = I be true ’

for 1 = n-1(n>1); then, by (3)
n

(Aan) mod p2 = ABZn-l(ZI - Aan—l) mod p2

n




n-1
Since Aan-l mod p2 = 1 by the induction hypothesis, we have

AB = I + zn—lE
2n-1 = b n-1’'

where £ _, is the error matrix. Thus we can write

on 2n—l 2n-l on
uan mod p = (I +p En_l)(l - p En_l) mod p

Since by construction the theorem holds for n=0, it is true for
all n>0 by induction.
Our algorithm first obtains sz by iterating k times, where

k is the minimum integer satisfying the inequality

(4)

p_-1 > g (? ?. 1/2
2 Toi=l  §=1 1]

i
This inequality ensures that the largest element of the inverse
matrix lies within the range of the segmented p-adic representa-

tion of the corresponding rational ([5] [8].

Let N denote a positive integer satisfying the inequality

N < p_-l {5)

We define a finite subset FN of the rational numbers Q as the set

F. = {a =

N %; 0O<lc!'<N and 0<|a|<N}

We call the set FN the order N Farey fractions, or simply Farey
rationals of order N.

If p and k are properly chosen to satisfy (4) then the
rationals FN which are mapped onto their segmented p-adic
representations in sz can be uniquely recovered using an algori-
thm which is based on the extended Euclidean algorithm for finding

the gr2atest common divisor of two integers [10] ([11].

..... e e e e s

.~ - SRR A e




1

Let a/b and w be the ij-th entry of A"~ and B,k respectively.

Then

k
ab™! mod p2 = w (6)

k
since bl exists mod p2 , due to the fact that det A mod p#0.

In the following section we describe how to recover a/b
given w, provided (4) is satisfied. This algorithm filters out
a very small subset of rationals among which the desired rational
belonging to FN occurs. We will call the function that computes
a/b given w,the EUCLID; thus EUCLID(w)=a/b.
Remark

The number k determined from (4) is generally larger than
desired; so to iterate k times encails much superfluous computa-
tion. A practical method of avoiding this would be to compute
EUCLID (sz) and EUCLID(sz+1) starting with some reasonable k

and stop as soon as they are equal. This would unambiguously

determine the inverse.




4. Computation of Farey rationals using the Euciidean algorithm

The Euclidean algorithm [ll] constructs three pairs of nam-
bers (ui,ui), (ai,bi), (ti’ti) for each i=0,1,2,...,k starting
with u =p”,u2=0, ag=w,by=1 and ending when t =0, as illustrated
in Table 1; here the symbol [ ] denotes the lower integral part

Note that the qi's liere correspond to the continued fraction
expansion [5] [12] of pr/w.

It can easily be shown that the pairs (ai,bi) in Table

satisfy the following conditions [10] [11]:

Cross-product rule:

r 2
lajeby gl +dagyy byl =P N4l
Monotonicity:
laj iyl la;l, with ay=w,a,=1 (8)
b.,11 > Ibs| with by=1,b =w " mod p" (9)

where w is such that gcd(w,pr)=l and w-1 denotes the multipli-

'

cative inverse of w mod pr.
It is now necessary to show that (i) there exists a pair

(aj,bj) in Table 1 which satisfies the condition of a Farey

rational F,, ‘Section 3), and (ii), such a pair is unigue in the sense

N
that there exists no other pair belonging to FN.

To prove this, we use the fact that ay (starting with ao=w)

successively decreases to 1; and bi (starting with bo=l) succes--

1

sively increases to w -~ when gcd(w,p’) = 1.

3 has already increased from

1 to |[N'| with |[N'| < |[N] and is close to |N|, and the correspond-

Let us assume that for some j, b

ing ay has already decreased from w to |N"]| where |N"| > |N| and




is close to |N|. Then using (7) we can prove that the succeed-

ing pair (aj+l' Dj+1) will have to be in FN or in other words

*1
il

a pair of the form (a.

j+1 bj+l) with |a

< N and |b.
- J

j+lI +l!

which skips a Farey rational belonging to FN cannot exist.

For if lajl > N+1 and ]bjl < N and |a < N and ?bj+l! B

j+1!

N+1l, we have |a. ,*b.| < NZ. Using this in (7) we obtain

Jj+l jl

. ! 2 !
!aj bj+l' > N°+1. But we have lajl > N+1. Therefore !bj+l! <
(N2+l)/(N+l) = [N]. Hence our assumption [bj+l| > N is false.

We will now show that there is only one such rational be-

longing to F In other words, we will show that if for some j,

N
(aj/bj) belongs to FN then (aj+l/bj+l) cannot be in Fy- Note that

the cross-product is maximum when

|aj|

'aj+l| = N-1, 'bj+ll = N.

= N, .l =N -1
by |

In such a case

2 2

la.*b (N-l)2 + N° < 2N" + 1

i j+ll b

37 2nl T
would still be short of satisfying (7). Notice that for any
other choice of aj, bj, aj+l’ bj+l the condition (7) would be
more severely violated. Also when Iajl = lbjl = N, it is not

= N, since a. would become zero by the

possiktle for |a 541

541!
algorithm in Table 1.

Thus a p-adic approximant (Hensel Code [5]) with the weight
w corresponds to the rational aj/bj belonging to FN and the
conversion is complete.
Remarks

(i) The class of rationals generated by the above algorithm

may contain a rational (in non-reduced form) whose reduced :




form is 1in FN; but this 1s an invalid choice. (Sce

example.)

(ii) If gcd(w, pr)#l, the factor is taken out and the result

adjusted suitably.
Example
Let p=5, r=4, and w=448. Hence N<17. We now show in
Table 2 the computations corresponding to Table 1 of the algo-

rithm. The Farey rational is 11/7 (and not 5/60).

by TG A T . s i s en e -
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5. Matrix-inversion example

1 -1 2
: Let A = |3 2 4
i
; 0 1 -2
Let p = 3
B 2 2
arl, = Jo 2 1
0
) 1 1]
1 0 1
Bl = 0 1 2 (mod 3)
0 2 2
b P~
P ——
1 0 1
B, = |6 7 2 (mod 3%=9)
L3 8 5 |
1 0 1]
B, = {60 61 20]  (moa 2%=81)
30 71 50
1 0 1
By = J4920 4921 1640)] (mod 3%=6561) ,
2460 5741 4100
1 0 1
Bjg = | 32285040 32265041 10761680] (mod 31%=43046721)

16142520 37665881 26904200

AR




We find that

1 ‘ 0 1
EUCLID(BlG) = - 3/4 1/4 - 1/4 = EUCLID(88)=
- 3/8 1/8 - 5/8

Note that the inverse matrix elements are simultaneously deter-
mined in p-idic digit parallel fashion with a guadratic rate of

convergence.

-1

%
¢

bt




6. Solution of a system of linear equations by linear convergence

We now briefly consider the problem of determining the solu-
tion to a system of linear equations iteratively.

Let Ax=b be a system of linear equations such that det A mod
p # 0, p being a prime. Let A=Al mod p and bl=b mod p. We first
solve Al x(l)=b1mod p by Gaussian elimination (say) and there-
after use the iterative scheme

< e ATt m x4 ATY b) moa pFTTix=1,2,. .0
where A=A;-p Mand M is the error matrix. We can easily show by
induction that

(k)

(Ax - b) mod pk = 0.

Then, our algorithm is formally:

Step 1 Solve Ay x(l)=b1 mod p.

(k+l) +1

Step 2 Use x =(p AIl mox &L A:l b) mod pk to obtain
the next iterate.
k k+1

Step 3 If EUCLID({x ) = EUCLID(x )} stop: else go to 2.
Remark

Note that this scheme for the solution of linear equations
has only a linear order convergence. However, it has the ad-
vantage of using only matrix-vector multiplications unlike the

Newton iterative scheme where matrix-matrix multiplications are

involved.




7.

Concluding remarks

(1)

(ii)

(iii)

(iv)

The scheme ,Qf formula (3) gives rise to quadratic
convergence. It is possible to use schemes having
higher-order convergence. The following scheme,
for example,

n
Byn = Bon-l (I + (I - Byn-1) (21 - AByn-1)) mod P> (10)

3 3
has cubic convergence.
We have assumed throughout that det A mod p # 0, but in
actual computation we cannot assume this a priocri. We
can keep choosing one prime after another until we suc-
cced; but this is very expensive computationally. It
would Le better to use the method of rank 1 update, which

is as follows:

We apply our algorithm to A+V instead of A where

a1
v = a, (b.,b.,...,b ] = abt is arbitrarily (11)
. 1772 n
: chosen.
n
Finally, we use the formula
-1 -1, a7t vasn Tt
A = (A+V) + € ) (12)
1-b~ (A+V) a

to retrieve the actual inverse. This method always suc-
ceeds except when A-1=0 over Z and A mod p=0.

It is possible to extend the scope of our algorithm for the
determination of the g-inverse of a singular matrix.

The algorithm determines all the elements of the inverse
matrix simultaneosly in p-adic digit parallel fashion with

a quadratic or higher-order convergence rate (13].




(v)

(vi)

In solving a system of linear equations, we note that
we have split the matrix A in a very special way, name-

ly, A=A, - p M. We could try splitting it as in the

1
Jacobi, Gauss-Seidel or SOR method [3]; but unfortun- :
ately, the convergence in our sense is not realizable in !
these cases.

We can invert polynomial matrices whose elements are in
Z [2) by constructing the inverses of the matrices Z[x]

mod Py for several primes P; and then using the Chinese

Remainder Theorem to construct the actual inverse [1}.




0 (Pr: 0) (w,
1 (w, 1) (tol
2 (g £ (&),
k (ukr u}'() (1,

1) [uo/W]
ty) [ul/al]
ti [uz/azl

1

w ) lusad

_ '
(uo aoqo' (o)

(uy - ayqy, uy - byq;)
(uy = 39y, vy = Bydy)

0, (-1)k+l pr

Table 1

Euclidean Algorithm




(uyr uj) (33, b;) 9 (0 %5)
(625, 0) (448, 1) 1 (177, -1)
(448, 1) (177, -1) 2 (94, 3)
(177, -1 (94, 3) 1 (83, -4)
(94, 3) (83, -4) 1 (11, 7
(83, -4) (11, 7) 7 (6, -53)
(11, 7) (6, -53) 1 (5, 60)
(6, -53) (5, 60) 1 (1, -113)
(5, 60) (1, -113) 5 (0, 625)
Table 2

Example of Euclidean algorithm
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